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AN IMPfLC7iT T E M FOR CATLULATION OF FLOW OF A VISCOUS,
JEAT-ONDUCTING GAS

Y ,A. Berezin, V.M. Kovenya, and N.N. Yanenko
Computation Center, Siberian Sector, USSR Academy of Sciences,

Novosibirsk

A suffciently detailed study of the problem of supersonic /3*
flow-around a body, must be 4ased on use of a complete system of

equations of a vSis-cous, compressible, heat-conducting gas. In
view of the complexity of these equations-, it is- impossible to
obtain analytical results at the present time, which leads to the
necessity for use of numerical methods, which have been worked
out intensively over a number of years [1-10].

The explicit schemes examined in [1, 2, 4-6] possess
arbitrary stability and, there are severe limitations for them on
time spacing r Cor the iteration parameter, in the case of
equilibrium problems), at medium and small Reynolds numbers.
The scheme presented in [7] removes the limitation on spacing T,
connected with viscosity, but the limitations connected with
the normal Kurant condition for gas dynamics without viscosity
remain. In this sense, the scheme is intermediate between
explicit.yand, ]implicit ones.

In solution of equilibrium problems, it is important to have
an absolutely stable scheme, free of limitations on the iteration
parameter. One possible implicit, absolutely stable scheme of
the first Qrder of accuracy, with complete approximation, is

constructed in our work.

I.' Formuia,ti to of te PrQb lem /4

A s~stem of euatione deserithng the flow of a viscous,
compresi-s ,l he goas- -oductg gas 4a the following for:.;

*Numbers-in thke margtin indfcate. pain.at.o in the foreign text.
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+( *A) 7= 7, I i

where "=t , the differential matrix operator

d -1
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the velocItF.. ye.tor on the , .x axe P, are the density and

internaA eqep~ y; P ~ the coefficient. of dynamic viscoeity,

S - S.CpC i, the Vatio of the reat capacity-; Pr is the Prandtl

numer; Ee is, the Aeyqolda* nqmber.. ' ayste C11-0-(3.. is- written

in dirme s.oaes •r varia les':
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Cthe dashes concern dimensional quantities and subscript 0,. to

values in the incoming fjow;.~Q. are the heat .conductivity

coefficients-, L is the length of the b.ody, u0 is the speed of

the incoming flow.

The gas pressure p is excluded, from systems C11-C31, by

means of the equation of state p (Cy - 11pe. It is assumed

that the coefficients of viscosity V and heat conductivity X

are exponential functions of the internal energy Cp, Cv = const).

Conditions of adhesion and heat insulation are placed on

the surface of the body:

0 C4)

To find the stationary solution of the problem of flow-around

(5)

the .steady state establishment method is used.

2. Difference Scheme

We introduce into cy-linder D ?5D CD is the rectangular

region , in which a numerical sQqoluton s stQught, a [0,. T

= G K is- the oundaryl a difference grid with. coefficients:
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Here,. is. the tetion parametet, hlCtl and h 2 k are the
griAd .pacings- on th-e N and y- coordinates. We introduce the
et. zuncor1 4,z,,) and difference operators h

A , approximating the ni tial differential matrix operators, with /6
first or second order accuracy. The difference operator of the
boundary conditions, lh approximates C4), with second order

accuracy. In accordance with differential problem (41, (5), we
set up the difference problem:

in cylinder D., to find the solution of equation

' ANo, I (6)

with boundary conditions

=- = (7)

For solution of difference problem (6) by the establishment
method, the following implicit separation scheme is assumed:

where " = , an au ar etor.

Eliminaton of f actional pteps gives a universal )algorithm
scheme,[111, having the property'of'complete approximation:

--

Difference .ch e1 C M peit .laboi r t t -trials to. b-e
avoided. A simUae.. .,p ttion t ee, b t not having complete
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.e examinee the s-tabiiity of a linearized scheme corresponding

to scheme (1, b: t.he Fourier method, at .rj = T. Selecting the

s-olution in the form w.e obtain the following /__

charaqcteristic equation:

.+ i-f)'f/j-( / r- /l~-+ _ 4--, C o

where

o,= +; ,:/*; ,= i/~o+ (-+

It Af 2 ' 2'>

214 4SAs 
2

At sufficiently large values of internal energy e, which

corresponds to regions behind strong shock waves (in hypersokic

flowsI, Eq. CIQ. takes the form:

In the a4sence of Y~~Qo-it~t Cri F<1Q , the root -of COal_ equals:

and, inr the ca se, I w- eocite: =; =



At small value- of the internal energy e Cregions of high

rarefacttonj, the characteristic equation

has the roots

It follows from formulas Cll)-C13) that X = maxlXil. < 1,
i.e., there is absolute stability in the limiting cases of

scheme C9() examined. It can be expected that, in the general

case, the scheme will be stable. Of course, the linear analysis

carried out is- not s-fficient; therefore, a test is necessary,

by means of systematic calculations. Such a test was carried out,

and it turned out that the scheme is stable, at least up to

Kurant number K < 10, where

= , / ,/ui+ c-=d4, 4 A

The proposed difference scheme can be used for calculation

of axisymmetric flows.

3. Examples of Numeri cal calcUations

11 Flov around a wedge, Caacul4tionsp were carried out

of a plane flow of a, y4S.cous-, compressible, heat-conducting gas
a4r"nd a Wejge of Xtt L along th e x axis-, at an arbitrary

a Tge of athtae CdQ.ot Jton t )I4 wr e placed on the surface of
the body-, .ad the 4ens-ty, was- determined from the continutty-

equation., .tih second order accuracy., Viscosity p was determined

by, the formula = C(e 0  , " ,,75.

6



The front, upper and

S - lower boundaries of
__ the calculation

-Y region were selected,
-Y

so that conditions

corresponding to unperturbed flow- could be placed on them: /9

where is the angle of attack. It turned ,out that it is sguf-

ficient to select a distance from the wedge to the front boundary

of the region on the order of L and, to the upper and lower

boundaries, 3-5L. The rear boundary of the region was removed

to a distance X - 5-15Eifrom the bottom of the wedge and boundary

condition af8.1l = 0, where 1 is the direction of the incoming

flow, were set on it. Comparison of numerical solutions 'in'

section x = 5L,.at X = 7L and X = 12L, shows that their difference

is not over.1%.

The spacingsof the adjusted difference network along the

x axis from zero to a were selected to be uniform and equal to

hi = Ahl = 1/m (m is the number of points on the wedge); at

x > a, nonuniform spacing was selected by formula hi = hi_ +

+ Ahl. The spacing along the y axis in the vicinity of the wedge

was assigned by the formula hK = Ah 2 = Ah1tan and, in the remain-

ing part of the region, by the formula bK r hK.1  + Ah2 . The

alculation re.gon contained 56 y poQ9nt and 4 Q x points, i.e.,

236a points- n all; the number of pointp on the body. r 10...

As- initial data vyer the entre egaQn, except -the boundaries of

the body, cQnd4tQns- C~14L ere as-ne, The numerical calcula-

ti4onq, were caied out at dfferent yae ues of the it,eration

parapeter T .Q23,.- ; .~, 0., -a,2 and 0.,3,. wch correspond to

Iurant nmg-er ._5 . ..CoQmpatrion of the steady numerical

s-olutkons on the surface of the bodies- for different I and &h

has shown that, with change in -, coincidence of the values of

7



the .unchjtQn .tght .occurred to the third decimal place Ci.e.,

the tead,y aolut~Qon does not depend on Tr and, with a 60%

decrease in. grid, spacing, the differences were not over 5-6%.

The establiihment criterion was- satisfaction of the condition

C15)

-3where & = 10 over the entire calculation region.

The results of calculation of flow around a wedge at zero

angle of attack, with y = 1.4, Pr Q 0.72, are presented in

Table 1 and in Graphs 1-3.

TABLE 1. /10

A 2 2 2 2 3 3 3

,e 100 250 500 1000 100 250 500
tanp 0.3 0.3 0.3 0.3 0.3 0.3 0.3

-o 0.36 0.65 0.9 - 0.1 0.36
E 0.606 0.591 0.550 0.482 0.368 0.310 0.264

0.410 0.476 0.591 0.601 0.273 0.427 0.519

Here, x0 is the rear critical point (boundary of the return flow

zone on the axis of symmetry y = 0), e and p are the internal
energy and density at the bottom of the wedge, at y = 0 and M,
Re are the Mch. and Reynolds numbers of an unperturbed flow.
The change ,n X , as functon of the M and Re numbers, coincides

qualitatively with. caQculatnqs 151,

S _s 13 The distribution of

x, the velocity components

on the axs y 0 Q, is
g ven in Fg, 1, at

various Re numbers C00.-

rig. 1. 1001, for the case
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S.0, - in creae n ey nolds number leads to an

inrzcre4se ~n the Peturn flow region. We make an estimate of the
calculate1 vf csity, in the track next to the body. The physical

viscosity V PM,,ep directly beyond the bottom shear, is on the
order of Q G2 Cat p : 0.5, p: , 1.5, Re: 100-3001, and the cal-
culated, determined ty formula v r 2 is on the order of

0'.02 1.Q2 . .l, lull. 0.03-0.1, i = i1, 21. In this
manner, the calculated viscosity is considerably less than the
physical in the near track.

ooD Distribution of the gas /11

density at the bottom of the
,3 =0 wedge is presented in Fig. 2,

L 147 at various Re and M = 2, 4 =
0f ofJ = 16.60. At the points closest

Fig. 2. to the corner, a drop in density

takes place, to a value close to
zero. With increase in Re, this zone decreased and, at Re = 1000,
it degenerated into a single point. This feature of the flow
was noted earlier in [5]. A decrease in density is observed

along the generatrix of the wedge, from values in the vicinity

of the tip close to a normal shock to almost unperturbed values.
The internal energy along the generatrix is nearly a constant,
which decreases with increase in Re. The curves of the x com-
ponents of the velocity at various distances from the bottom of
the wedge along the axis of symmetry are given in Fig. 3, at
Re r lO0_, M 2, 2 1r6.6.i The calculation Bhowthat an
associated shock, wave iforms, ahead of the wedge (Fig. 41. With
Increase in Re number C 250., the Yveocity distribution in
the shock wave. fa almost un.changed, which apparently can be
explained 4- the effect of the calculated viscsity. For a more
deta4jled expianation of the nature of the flow in the vicinity
of the tip, calc utons-, according to schemes of a high order of
accuracy., are necessary.

9



t/ 002 0 06 08 /

AI = MOO Calculations of flow /12
49 ?=!66" around a wedge at a nonzero

angle of attack were carried

out C( = 11.5; M = 2-3;

S Re = 100, 500, 1000; = 16.60,
29 .). Curves of the distribu-

2 x tion of internal energy and

of the x component of the
Fig. 3. veloctty at various distances

from the wedge are presented

in Figs. 5 and 6 (M = 2, Re =
-2 = .500, p = 16.60). It is

y/=IS °  evident from Fig. 5 that the
/ °° vortex axis is located along

as
the direction of the incoming

flow. As is well-known,(4ee,

for example, [13]), there is

a fan of rarefaction waves

beyond the body around which
Fig. 4.

the flow takes place. A zone

of reduced internal energy is

S. I seen well in Fig. 6, which

as /=t; corresponds to these rare-

faction waves. A similar

phenomenon was noted in our

S as calculations of flow around a

wedge at a zero angle of attack.

-o. 21 Flow around a plate. /13

Ca4,cuations were carried out

of flow around a,,Plate, of

:length L 7 1 and thickness

4S h2, .at VaPtO~ angles: of att:ack, The calculation region

and grid spac ng were selected j'ust as- in the case of the wedge.

10



Y.2 / a/ ( Typical calculations were

as =, {  carried out at - = 0.1-0.2,

1 2 hl 4 Q..l and h2  0.3.

SI To accelerate the convergence,

Io I as aI, the steady solution at smaller

SReynolds numbers was taken as

~-=z the initial conditions, which

led to approximately a 30%
Fig. 6. decrease in number of iterations.

The flow was considered to be

steady upon satisfying conditions C1i51. The parameters of the

calculated versions are presented in Table 2.

TABLE 2.

_ 2 2 2 2 2 3 3 3

fe 100 200 '400 500 1000 100 200 400

4nle 0 0 0 0 0 0 0 0

rttack
in O

5 5 IO 2 2 3 2 2 2
200 400 200 400 1000 200 400 2000 4000

0 0 0 23 23 11.5 34.5 23 23'.

In calculations of flow around a 0,1ate-at a zero angle of

attack, the formation of a boundary layer was. studied, as a

function of the Mac. and Reynolds nunlerq. Tt is known Csee,

for example 11311, that the thicknese of the boundary layer in

flow around a 4od-'4y, a fncQmpr ls, "  fluid is determined by,

the forml, A m "1 Re T , with a proportiQality coefficient on

the Qrde' of untt,y a the cage of a compres:sbhle, gas, as

the calcjlations qhow , a qali tatve. dependence of thickness

& on Reyaold njmb'e i- preserved C(ig. 71, but the value of

& is greater; ths- increase n. thickness 6' is determined by: the

interaction of the thermal and boundary layers [131]. A

11



characte.t4.. fetire of he filow- is- thickening of the boundary

layer on the front part of the plate, where fusion of it with

the asaacated phooakkwave takes- place.i The increase in boundary
lay'er thicknes' with increase in Mach number noted in [131 /14

attracts attention C'ig. 81.

At M = 10, the

o a "H velocity profile in the

: -/oo zone of the developed

boundary layer is close

to linear. Distribution

of density on the plate

os L , Ij . depends slightly on Re

number. A decrease in

Fig. 7. density is observed along

the plate, to values less

than in unperturbed flow (p % 0.75p0 ,

S o I M = 2). In the front section of

I X=o the plate, a sharp increase in

density is observed, which is con-
O U nected with shock wave formation.

SX=I The distribution Of internal energy

along the plate is almost linear;
Po2 there is a discontinuity in it,
o connected with increase in entropy
Y Xin the transition through the

b ho Wvk wav the so-called entropy

as la yer1~, only in the vicinity of
thbe origin of the plate. The

icrea e i n interjal energy in

Fzg, 8, the plate over the energy in the

12Qling glow U mall, and it
decQreasep t 4ce R4neyno lds number,

12



The local and total res:istaance factors- of the plate .were

computed in the calculations, by the following formulas:

_16)

Cx ./15

A comparison of the coefficients of. frictional resistance of the

plate, calculated by formula C161 and by the empirical formula

of Junge [13] is- made in Table 3:

C17)

The increase in divergence of the calculated resistance factor

from that determined by formula (17) can be explained by the

fact that formula C17) holds true for a boundary layer, not

distorted by the effect of the shock wave. In our calculations,

there, always is an interaction of the boundary layer with the

associated shock wave, which leads to some change in the velocity

profile next to the body. Moreover, with increase in Re number,

the relative effect of the calculated viscosity increases, leading

to errors in calculation of the resistance factor. As in flow

around a wedge, there is a curvature of the shock wave in these

calculations, in the frqnt part of the plate, because of the

viscous; interaction. Theslope of the shock wave downstream

approximates its -lope in a nony cous ga Cfor M 2,. Re = 500,

the s-hock wave piQpe angle in a nonyis-cous gas is 130., but the

calculatlon gWivep: 32,Lj.

13



TABLE 3. RESISTANCE FACTOR OF PLATE (w =0.75).

Calculated Theorti- =
fe Resistance cai _

Resistanc '_r _-C ( "4.
2 100 0.1366 0.1328 0.0038 2.86
2 200 0.0926 0.0940 -0.0014 -1.5
2 400 0.0618 C.0664 -0.0046 -6.93
3 IOJ 0.1401 0.1328 -0.0073 -5.5
3 200 0.0940 0.0940 -0.0036 -3.84
3 400 0.0601 0.066I -0.0060 -9.05

Calculations also were made of flow around a plate at a

nonzero angle of attack. The internal energy and density on the

upwind side is considerably greater than on the downwind (Fig. /16

9). There is- a rarefaction zone on the downwind side, in which

the velocity x component profiles are close to linear; the stream

is displaced in the direction of - flow (Fig. 10). At angle

of attack a = 0.4, calculations were carried out at Reynolds

numbers Re = 1000, 2000 and 4000, M = 2. It was assumed that, at

large Re numbers, vortex formation will occur. The calculations

showed that, at Re = 1000, a change in s e t . of the velocity

arises at one point above the end of the plate; however, further /17
increase in Reynolds number did not lead to the appearance of

vortexes. In flow around a plate, stagnant zones do not form;

therefore, the velocity of the flow and, of course, the calculated

viscosity in the vicinity of the plate is quite high, which

apparently, can explain the absence of vortexes.,. A test was made

of sati's.faction of the lawpw of QconervatAQn of mass and total
energy, to check. the accuracy of the. calculations, The error in
conservatton Qof m-a wap not over 1,.5% and of energy, 0.3%.

14



t'( Iin typical calcula-

tiosa-, the number of

iterat:ions- to steady

flow is ,200-250 for

the wedge and 150 for
the plate, and the

time of calculation of

one version on the

Fig. 9. BESM-6 computer is

16-25 minutes.

Conclusions

o at as aoi i. An implicity

S/ I difference scheme of

Io &= - separation of first

g order accuracy by dire.c-

2 \07 o 1 tional variables having

/ complete, apprdxima-

s tion, was constructed

so for a system of equations

I I describing plane flow

of a viscous, compres-

Fig. 10. sible, heat-conducting,

gas.

2. The a sQlute tabil.ty of t~is cheme in the limiting

cases was demaonstrated by the Fourier method.

3. Syste*at*c calculations showed that the shbeme is

sta :le at leant vp to. Kutra m nwu : a T, iQ,

4. tea.\ 9o :pto 1i0 3 C( jax[ takes: place

in 15-3:: . teat on,.

15



5. The oIhckhee permits. calculations to be carried out

under ar t 1 ar-ly asgned initial conditions,

6. A picture was obtained Of flow around a wedge and a

plate at vartous- angles of attack Cassociated shock wave, vortex

zone and rarefaction zonel.
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